metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.139D10, C10.882- 1+4, (Q8xDic5):18C2, C4.4D4.8D5, (C4xDic10):44C2, (C2xD4).169D10, (C2xC20).77C23, (C2xQ8).135D10, C22:C4.33D10, (D4xDic5).15C2, Dic5:Q8:22C2, C20.124(C4oD4), C4.15(D4:2D5), (C4xC20).184C22, (C2xC10).215C24, C23.37(C22xD5), Dic5.44(C4oD4), C20.17D4.11C2, (D4xC10).151C22, C23.D10:37C2, C4:Dic5.233C22, (C22xC10).45C23, (Q8xC10).124C22, C22.236(C23xD5), Dic5.14D4:38C2, C23.D5.52C22, C23.11D10:18C2, C5:6(C22.50C24), (C2xDic5).262C23, (C4xDic5).139C22, C10.D4.48C22, C2.49(D4.10D10), (C2xDic10).304C22, (C22xDic5).140C22, C2.74(D5xC4oD4), C10.93(C2xC4oD4), C2.55(C2xD4:2D5), (C5xC4.4D4).6C2, (C2xC4).299(C22xD5), (C5xC22:C4).62C22, SmallGroup(320,1343)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42.139D10
G = < a,b,c,d | a4=b4=c10=1, d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, bd=db, dcd-1=c-1 >
Subgroups: 614 in 212 conjugacy classes, 97 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C10, C10, C42, C42, C22:C4, C22:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C2xQ8, Dic5, Dic5, C20, C20, C2xC10, C2xC10, C42:C2, C4xD4, C4xQ8, C22:Q8, C4.4D4, C4.4D4, C42:2C2, C4:Q8, Dic10, C2xDic5, C2xDic5, C2xDic5, C2xC20, C2xC20, C5xD4, C5xQ8, C22xC10, C22.50C24, C4xDic5, C4xDic5, C10.D4, C10.D4, C4:Dic5, C4:Dic5, C23.D5, C4xC20, C5xC22:C4, C2xDic10, C22xDic5, D4xC10, Q8xC10, C4xDic10, C23.11D10, Dic5.14D4, C23.D10, D4xDic5, C20.17D4, Dic5:Q8, Q8xDic5, C5xC4.4D4, C42.139D10
Quotients: C1, C2, C22, C23, D5, C4oD4, C24, D10, C2xC4oD4, 2- 1+4, C22xD5, C22.50C24, D4:2D5, C23xD5, C2xD4:2D5, D5xC4oD4, D4.10D10, C42.139D10
(1 118 15 113)(2 114 11 119)(3 120 12 115)(4 116 13 111)(5 112 14 117)(6 100 21 95)(7 96 22 91)(8 92 23 97)(9 98 24 93)(10 94 25 99)(16 124 34 129)(17 130 35 125)(18 126 31 121)(19 122 32 127)(20 128 33 123)(26 44 36 49)(27 50 37 45)(28 46 38 41)(29 42 39 47)(30 48 40 43)(51 68 106 71)(52 72 107 69)(53 70 108 73)(54 74 109 61)(55 62 110 75)(56 76 101 63)(57 64 102 77)(58 78 103 65)(59 66 104 79)(60 80 105 67)(81 137 152 150)(82 141 153 138)(83 139 154 142)(84 143 155 140)(85 131 156 144)(86 145 157 132)(87 133 158 146)(88 147 159 134)(89 135 160 148)(90 149 151 136)
(1 141 20 133)(2 147 16 139)(3 143 17 135)(4 149 18 131)(5 145 19 137)(6 60 30 110)(7 56 26 106)(8 52 27 102)(9 58 28 108)(10 54 29 104)(11 134 34 142)(12 140 35 148)(13 136 31 144)(14 132 32 150)(15 138 33 146)(21 105 40 55)(22 101 36 51)(23 107 37 57)(24 103 38 53)(25 109 39 59)(41 70 93 65)(42 79 94 74)(43 62 95 67)(44 71 96 76)(45 64 97 69)(46 73 98 78)(47 66 99 61)(48 75 100 80)(49 68 91 63)(50 77 92 72)(81 117 86 127)(82 123 87 113)(83 119 88 129)(84 125 89 115)(85 111 90 121)(112 157 122 152)(114 159 124 154)(116 151 126 156)(118 153 128 158)(120 155 130 160)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 7 33 36)(2 6 34 40)(3 10 35 39)(4 9 31 38)(5 8 32 37)(11 21 16 30)(12 25 17 29)(13 24 18 28)(14 23 19 27)(15 22 20 26)(41 111 98 126)(42 120 99 125)(43 119 100 124)(44 118 91 123)(45 117 92 122)(46 116 93 121)(47 115 94 130)(48 114 95 129)(49 113 96 128)(50 112 97 127)(51 141 56 146)(52 150 57 145)(53 149 58 144)(54 148 59 143)(55 147 60 142)(61 89 79 155)(62 88 80 154)(63 87 71 153)(64 86 72 152)(65 85 73 151)(66 84 74 160)(67 83 75 159)(68 82 76 158)(69 81 77 157)(70 90 78 156)(101 133 106 138)(102 132 107 137)(103 131 108 136)(104 140 109 135)(105 139 110 134)
G:=sub<Sym(160)| (1,118,15,113)(2,114,11,119)(3,120,12,115)(4,116,13,111)(5,112,14,117)(6,100,21,95)(7,96,22,91)(8,92,23,97)(9,98,24,93)(10,94,25,99)(16,124,34,129)(17,130,35,125)(18,126,31,121)(19,122,32,127)(20,128,33,123)(26,44,36,49)(27,50,37,45)(28,46,38,41)(29,42,39,47)(30,48,40,43)(51,68,106,71)(52,72,107,69)(53,70,108,73)(54,74,109,61)(55,62,110,75)(56,76,101,63)(57,64,102,77)(58,78,103,65)(59,66,104,79)(60,80,105,67)(81,137,152,150)(82,141,153,138)(83,139,154,142)(84,143,155,140)(85,131,156,144)(86,145,157,132)(87,133,158,146)(88,147,159,134)(89,135,160,148)(90,149,151,136), (1,141,20,133)(2,147,16,139)(3,143,17,135)(4,149,18,131)(5,145,19,137)(6,60,30,110)(7,56,26,106)(8,52,27,102)(9,58,28,108)(10,54,29,104)(11,134,34,142)(12,140,35,148)(13,136,31,144)(14,132,32,150)(15,138,33,146)(21,105,40,55)(22,101,36,51)(23,107,37,57)(24,103,38,53)(25,109,39,59)(41,70,93,65)(42,79,94,74)(43,62,95,67)(44,71,96,76)(45,64,97,69)(46,73,98,78)(47,66,99,61)(48,75,100,80)(49,68,91,63)(50,77,92,72)(81,117,86,127)(82,123,87,113)(83,119,88,129)(84,125,89,115)(85,111,90,121)(112,157,122,152)(114,159,124,154)(116,151,126,156)(118,153,128,158)(120,155,130,160), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,7,33,36)(2,6,34,40)(3,10,35,39)(4,9,31,38)(5,8,32,37)(11,21,16,30)(12,25,17,29)(13,24,18,28)(14,23,19,27)(15,22,20,26)(41,111,98,126)(42,120,99,125)(43,119,100,124)(44,118,91,123)(45,117,92,122)(46,116,93,121)(47,115,94,130)(48,114,95,129)(49,113,96,128)(50,112,97,127)(51,141,56,146)(52,150,57,145)(53,149,58,144)(54,148,59,143)(55,147,60,142)(61,89,79,155)(62,88,80,154)(63,87,71,153)(64,86,72,152)(65,85,73,151)(66,84,74,160)(67,83,75,159)(68,82,76,158)(69,81,77,157)(70,90,78,156)(101,133,106,138)(102,132,107,137)(103,131,108,136)(104,140,109,135)(105,139,110,134)>;
G:=Group( (1,118,15,113)(2,114,11,119)(3,120,12,115)(4,116,13,111)(5,112,14,117)(6,100,21,95)(7,96,22,91)(8,92,23,97)(9,98,24,93)(10,94,25,99)(16,124,34,129)(17,130,35,125)(18,126,31,121)(19,122,32,127)(20,128,33,123)(26,44,36,49)(27,50,37,45)(28,46,38,41)(29,42,39,47)(30,48,40,43)(51,68,106,71)(52,72,107,69)(53,70,108,73)(54,74,109,61)(55,62,110,75)(56,76,101,63)(57,64,102,77)(58,78,103,65)(59,66,104,79)(60,80,105,67)(81,137,152,150)(82,141,153,138)(83,139,154,142)(84,143,155,140)(85,131,156,144)(86,145,157,132)(87,133,158,146)(88,147,159,134)(89,135,160,148)(90,149,151,136), (1,141,20,133)(2,147,16,139)(3,143,17,135)(4,149,18,131)(5,145,19,137)(6,60,30,110)(7,56,26,106)(8,52,27,102)(9,58,28,108)(10,54,29,104)(11,134,34,142)(12,140,35,148)(13,136,31,144)(14,132,32,150)(15,138,33,146)(21,105,40,55)(22,101,36,51)(23,107,37,57)(24,103,38,53)(25,109,39,59)(41,70,93,65)(42,79,94,74)(43,62,95,67)(44,71,96,76)(45,64,97,69)(46,73,98,78)(47,66,99,61)(48,75,100,80)(49,68,91,63)(50,77,92,72)(81,117,86,127)(82,123,87,113)(83,119,88,129)(84,125,89,115)(85,111,90,121)(112,157,122,152)(114,159,124,154)(116,151,126,156)(118,153,128,158)(120,155,130,160), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,7,33,36)(2,6,34,40)(3,10,35,39)(4,9,31,38)(5,8,32,37)(11,21,16,30)(12,25,17,29)(13,24,18,28)(14,23,19,27)(15,22,20,26)(41,111,98,126)(42,120,99,125)(43,119,100,124)(44,118,91,123)(45,117,92,122)(46,116,93,121)(47,115,94,130)(48,114,95,129)(49,113,96,128)(50,112,97,127)(51,141,56,146)(52,150,57,145)(53,149,58,144)(54,148,59,143)(55,147,60,142)(61,89,79,155)(62,88,80,154)(63,87,71,153)(64,86,72,152)(65,85,73,151)(66,84,74,160)(67,83,75,159)(68,82,76,158)(69,81,77,157)(70,90,78,156)(101,133,106,138)(102,132,107,137)(103,131,108,136)(104,140,109,135)(105,139,110,134) );
G=PermutationGroup([[(1,118,15,113),(2,114,11,119),(3,120,12,115),(4,116,13,111),(5,112,14,117),(6,100,21,95),(7,96,22,91),(8,92,23,97),(9,98,24,93),(10,94,25,99),(16,124,34,129),(17,130,35,125),(18,126,31,121),(19,122,32,127),(20,128,33,123),(26,44,36,49),(27,50,37,45),(28,46,38,41),(29,42,39,47),(30,48,40,43),(51,68,106,71),(52,72,107,69),(53,70,108,73),(54,74,109,61),(55,62,110,75),(56,76,101,63),(57,64,102,77),(58,78,103,65),(59,66,104,79),(60,80,105,67),(81,137,152,150),(82,141,153,138),(83,139,154,142),(84,143,155,140),(85,131,156,144),(86,145,157,132),(87,133,158,146),(88,147,159,134),(89,135,160,148),(90,149,151,136)], [(1,141,20,133),(2,147,16,139),(3,143,17,135),(4,149,18,131),(5,145,19,137),(6,60,30,110),(7,56,26,106),(8,52,27,102),(9,58,28,108),(10,54,29,104),(11,134,34,142),(12,140,35,148),(13,136,31,144),(14,132,32,150),(15,138,33,146),(21,105,40,55),(22,101,36,51),(23,107,37,57),(24,103,38,53),(25,109,39,59),(41,70,93,65),(42,79,94,74),(43,62,95,67),(44,71,96,76),(45,64,97,69),(46,73,98,78),(47,66,99,61),(48,75,100,80),(49,68,91,63),(50,77,92,72),(81,117,86,127),(82,123,87,113),(83,119,88,129),(84,125,89,115),(85,111,90,121),(112,157,122,152),(114,159,124,154),(116,151,126,156),(118,153,128,158),(120,155,130,160)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,7,33,36),(2,6,34,40),(3,10,35,39),(4,9,31,38),(5,8,32,37),(11,21,16,30),(12,25,17,29),(13,24,18,28),(14,23,19,27),(15,22,20,26),(41,111,98,126),(42,120,99,125),(43,119,100,124),(44,118,91,123),(45,117,92,122),(46,116,93,121),(47,115,94,130),(48,114,95,129),(49,113,96,128),(50,112,97,127),(51,141,56,146),(52,150,57,145),(53,149,58,144),(54,148,59,143),(55,147,60,142),(61,89,79,155),(62,88,80,154),(63,87,71,153),(64,86,72,152),(65,85,73,151),(66,84,74,160),(67,83,75,159),(68,82,76,158),(69,81,77,157),(70,90,78,156),(101,133,106,138),(102,132,107,137),(103,131,108,136),(104,140,109,135),(105,139,110,134)]])
53 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | ··· | 4O | 4P | 4Q | 4R | 4S | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20L | 20M | 20N | 20O | 20P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
53 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4oD4 | C4oD4 | D10 | D10 | D10 | D10 | 2- 1+4 | D4:2D5 | D5xC4oD4 | D4.10D10 |
kernel | C42.139D10 | C4xDic10 | C23.11D10 | Dic5.14D4 | C23.D10 | D4xDic5 | C20.17D4 | Dic5:Q8 | Q8xDic5 | C5xC4.4D4 | C4.4D4 | Dic5 | C20 | C42 | C22:C4 | C2xD4 | C2xQ8 | C10 | C4 | C2 | C2 |
# reps | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 2 | 8 | 2 | 2 | 1 | 4 | 4 | 4 |
Matrix representation of C42.139D10 ►in GL6(F41)
40 | 9 | 0 | 0 | 0 | 0 |
18 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 9 |
0 | 0 | 0 | 0 | 0 | 32 |
1 | 0 | 0 | 0 | 0 | 0 |
23 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 7 | 0 | 0 |
0 | 0 | 34 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 39 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
23 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 14 | 0 | 0 |
0 | 0 | 30 | 27 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
G:=sub<GL(6,GF(41))| [40,18,0,0,0,0,9,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,9,32],[1,23,0,0,0,0,0,40,0,0,0,0,0,0,40,34,0,0,0,0,7,7,0,0,0,0,0,0,1,39,0,0,0,0,0,40],[1,23,0,0,0,0,0,40,0,0,0,0,0,0,14,30,0,0,0,0,14,27,0,0,0,0,0,0,32,0,0,0,0,0,0,32] >;
C42.139D10 in GAP, Magma, Sage, TeX
C_4^2._{139}D_{10}
% in TeX
G:=Group("C4^2.139D10");
// GroupNames label
G:=SmallGroup(320,1343);
// by ID
G=gap.SmallGroup(320,1343);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,758,387,100,794,297,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations